Answer:
∆ZVY ≅ ∆WVY
Step-by-step explanation:
According to the image attached, a parallelogram is divided in two congruent triangles, where
[tex]\angle VZY \cong \angle YWV\\\angle ZVY \cong \angle WVY[/tex], by given.
Also, [tex]\angle VZY + \angle ZVY + \angle VYZ = 180\°[/tex], by internal angles theorem.
Also, [tex]\angle YWV + \angle WVY + \angle VYW = 180\°[/tex], by internal angles theorem.
Then,
[tex]\angle VYZ= \angle VYW \\[/tex]
Therefore, [tex]\triangle VZY \cong \triangle VWY[/tex], by AAA postulate of congruence.
So, the right anwer is ∆ZVY ≅ ∆WVY, because it shows correctly each pair a vertices.