Answer:
[tex]F=27.39N[/tex]
Explanation:
Take sum of torques at the point the step touches the wheel, that eliminates two torques
Σ[tex]T=T_{N}+T_{f}+T_{W}[/tex]
Since we are looking for when the wheel just starts to rise up N-> 0 so no torque due to normal force
[tex]T_{N}=0[/tex]
The perpendicular lever arm for the F force is R-h
[tex]T_{f}=F*(r-h)[/tex]
And the T of gravity according to the image
[tex]T_{W}=W*(\sqrt{r^2-(r-h)^2}[/tex]
Σ[tex]T=0[/tex]
[tex]T_{N}+T_{f}+T_{W}=0[/tex]
[tex]F*(r-h)+W*(\sqrt{r^2-(r-h)^2}=0[/tex]
[tex]F=\frac{W*(\sqrt{r^2-(r-h)^2}}{r-h}[/tex]
[tex]F=\frac{24.9 N*(\sqrt{0.336^2-(0.336-0.110)^2}}{(0.336-0.11)}[/tex]
[tex]F=27.39N[/tex]