Respuesta :
Answer:
Chuck's rate of travel = 63mph
Step-by-step explanation:
Given chuck travels 252 miles and dana travels 228 miles. Given that they both take same time to travel .
Let the travelling time be T.
Also given that the speed of chuck is 6mph greater than that of dana's.
let the speed of chuck be x. Now
Speed = [tex]\frac{distance }{time}[/tex]
x= [tex]\frac{252}{T}[/tex]
Now for Dana's speed
x-6= [tex]\frac{228}{T}[/tex]
When we divide both the equations we get
[tex]\frac{x}{x-6}=\frac{252}{228}[/tex]
[tex]\frac{x}{x-6}=\frac{63}{57}[/tex]
x=63mph
63 m/h
Step-by-step explanation:
Chuck travels 252 miles and Dana travels 228 miles. Their rates of travel (speeds) differ by 6 mph. Chuck travels faster.
Let us assume Dana's speed to be [tex]x\frac{m}{h}[/tex]. Then Chuck's speed is [tex](x+6)\frac{m}{h}[/tex].
Now, their times of travel are the same.
[tex]Speed=\frac{Distance}{\textrm{Time Taken}}[/tex]
[tex]\textrm{Time Taken = }\frac{Distance}{Speed}[/tex]
[tex]\frac{252m}{x+6\frac{m}{h} }=\frac{228m}{x\frac{m}{h} }[/tex]
[tex]\frac{x+6}{x}=\frac{252}{228}[/tex]
[tex]\frac{6}{x}=\frac{252}{228}-1=0.10526[/tex]
[tex]x=\frac{6}{0.10526}=57\frac{m}{h}[/tex]
∴ Chuck's rate of travel = [tex]x+6=57+6=63\frac{m}{h}[/tex]