Chuck and Dana agree to meet in Chicago for the weekend. Chuck travels 252 miles in the same time that Dana travels 228 miles. If Chuck's rate of travel is 6 mph more than Dana's, then at what rate does Chuck travel?

Respuesta :

Answer:

Chuck's rate of travel = 63mph

Step-by-step explanation:

Given chuck travels 252 miles and dana travels 228 miles. Given that they both take same time to travel .

Let the travelling time be T.

Also given that the speed of chuck is 6mph greater than that of dana's.

let the speed of chuck be x. Now

Speed = [tex]\frac{distance }{time}[/tex]

x= [tex]\frac{252}{T}[/tex]

Now for Dana's speed

x-6= [tex]\frac{228}{T}[/tex]

When we divide both the equations we get

[tex]\frac{x}{x-6}=\frac{252}{228}[/tex]

[tex]\frac{x}{x-6}=\frac{63}{57}[/tex]

x=63mph

63 m/h

Step-by-step explanation:

       Chuck travels 252 miles and Dana travels 228 miles. Their rates of travel (speeds) differ by 6 mph. Chuck travels faster.

       Let us assume Dana's speed to be [tex]x\frac{m}{h}[/tex]. Then Chuck's speed is [tex](x+6)\frac{m}{h}[/tex].

       Now, their times of travel are the same.

[tex]Speed=\frac{Distance}{\textrm{Time Taken}}[/tex]

[tex]\textrm{Time Taken = }\frac{Distance}{Speed}[/tex]

[tex]\frac{252m}{x+6\frac{m}{h} }=\frac{228m}{x\frac{m}{h} }[/tex]

[tex]\frac{x+6}{x}=\frac{252}{228}[/tex]

[tex]\frac{6}{x}=\frac{252}{228}-1=0.10526[/tex]

[tex]x=\frac{6}{0.10526}=57\frac{m}{h}[/tex]

∴ Chuck's rate of travel = [tex]x+6=57+6=63\frac{m}{h}[/tex]