What is the area of this rectangle?

Answer:
The answer to your question is: 40u²
Step-by-step explanation:
Data
Find the vertex
A (-4, 0)
B (-6, 4)
C (2, 8)
D (4, 4)
Formula
d = [tex]\sqrt{(x2 - x1)^{2} + (y2 - y1)^{2} }[/tex]
Area = base x height
Process
1.- Find the distance from A to B, and the distance from A to D
2.- Obtan the area of the rectangle
1.-
dAB = [tex]\sqrt{(-6 + 4)^{2} + (4 - 0)^{2} }[/tex]
dAB = [tex]\sqrt{2^{2} + 4^{2} }[/tex]
dAB = [tex]\sqrt{4 + 16}[/tex]
dAB = [tex]\sqrt{20}[/tex]
dAD = [tex]\sqrt{(4 + 4)^{2} + (4 - 0)^{2} }[/tex]
dAD = [tex]\sqrt{8^{2} + 4^{2} }[/tex]
dAD = [tex]\sqrt{64 + 16}[/tex]
dAD = [tex]\sqrt{80}[/tex]
2.-
Area = [tex]\sqrt{20} x \sqrt{80}[/tex]
Area = [tex]\sqrt{20x80}[/tex]
Area = [tex]\sqrt{1600}[/tex]
Area = 40u²