Respuesta :
Answer:
ΔH = -135.05 kJ
Explanation:
(1) 2 ClF(g) + O₂(g) → Cl₂O(g) + OF₂(g) ΔHo = 167.5 kJ
(2) 2 F₂(g) + O₂(g) → 2 OF₂(g) ΔHo = −43.5 kJ
(3) 2 ClF₃(l) + 2 O₂(g) → Cl₂O(g) + 3 OF₂(g) ΔHo = 394.1 kJ
We can use Hess' Law to calculate the ΔH of reaction:
ClF(g) + 1/2O₂(g) → 1/2Cl₂O(g) + 1/2OF₂(g) ΔHo = 167.5 x 1/2 = 83.75 kJ
F₂(g) + 1/2O₂(g) → OF₂(g) ΔHo = −43.5 x 1/2 = -21.75 kJ
1/2Cl₂O(g) + 3/2 OF₂(g) → ClF₃(l) + O₂(g) ΔHo = 394.1 x -1 x 1/2 = -197.05kJ
______________________________________________
(4) ClF (g) + F₂ (g) → ClF₃ (l) ΔH = 83.75 kJ-21.75 kJ-197.05kJ
ΔH = -135.05 kJ/mol
The heat of reaction for the production of ClF₃ is 135.05 kJ
From the question,
We are to calculate the heat of reaction for the formation of ClF₃
From the given information,
(1) 2ClF(g) + O₂(g) → Cl₂O(g) + OF₂(g) ΔHo = 167.5 kJ
(2) 2F₂(g) + O₂(g) → 2OF₂(g) ΔHo = −43.5 kJ
(3) 2ClF₃(l) + 2O₂(g) → Cl₂O(g) + 3OF₂(g) ΔHo = 394.1 kJ
Divide equation (1), (2), and (3) by 2 to get
(1) ClF(g) + ¹/₂O₂(g) → ¹/₂Cl₂O(g) + ¹/₂OF₂(g) ΔHo = 83.75 kJ
(2) F₂(g) + ¹/₂O₂(g) → OF₂(g) ΔHo = −21.75 kJ
(3) ClF₃(l) + O₂(g) → ¹/₂Cl₂O(g) + ³/₂OF₂(g) ΔHo = 197.05 kJ
Since the product we are interested in is ClF₃,
Reverse equation (3) to get
(4) ¹/₂Cl₂O(g) + ³/₂OF₂(g) → ClF₃(l) + O₂(g) ΔHo = -197.05 kJ
Now, add equations (1), (2), and (4)
(1) ClF(g) + ¹/₂O₂(g) → ¹/₂Cl₂O(g) + ¹/₂OF₂(g) ΔHo = 83.75 kJ
(2) F₂(g) + ¹/₂O₂(g) → OF₂(g) ΔHo = −21.75 kJ
(4) ¹/₂Cl₂O(g) + ³/₂OF₂(g) → ClF₃(l) + O₂(g) ΔHo = -197.05 kJ
-----------------------------------------------------------------------------------------------------
ClF(g) + F₂(g) → ClF₃(l) ΔH rxn = 135.05 kJ
Hence, the heat of reaction for the production of ClF₃ is 135.05 kJ
Learn more here: https://brainly.com/question/14552552