Triangle X Y Z is shown. Angle X Z Y is a right angle. Angle Z X Y is 60 degrees and angle X Y Z is 30 degrees. The length of hypotenuse X Y is 42 and the length of X Z is 21.
Given right triangle XYZ, what is the value of tan(60°)?

One-half
StartFraction StartRoot 3 EndRoot Over 2 EndFraction
StartRoot 3 EndRoot
StartFraction 2 Over 1 EndFraction

Triangle X Y Z is shown Angle X Z Y is a right angle Angle Z X Y is 60 degrees and angle X Y Z is 30 degrees The length of hypotenuse X Y is 42 and the length o class=

Respuesta :

Answer:

Option C) [tex]\tan 60^\circ = \sqrt3[/tex]

Step-by-step explanation:

We are given the following in the question:

A right angled triangle XYZ.

[tex]\angle XZY = 90^\circ\\\angle ZXY = 60^\circ\\\angle XYZ = 30^\circ[/tex]

Length of hypotenuse XY = 42

Length of XZ = 21.

The right angle triangle follows or satisfy the Pythagoras theorem

  • The Pythagoras theorem states that the hypotenuse is the longest side of a right angles triangle and that the sum of square of both the sides of the right angles triangle is equal to the square of the hypotenuse.

Thus, we can write:

[tex](\text{Side 1})^2 + (\text{Side 2})^2 = (\text{Hypotenuse})^2[/tex]

Putting the values, we get,

[tex](XZ)^2 + (ZY)^2 = (XY)^2\\(21)^2 + (ZY)^2 = (42)^2\\(ZY)^2 = 1764 - 441 = 1323\\ZY = \sqrt{1323} = 21\sqrt{3}[/tex]

Now, we define,

[tex]\bold{\tan \theta} = \displaystyle\frac{\text{Perpendicular}}{\text{Base}}[/tex]

where the perpendicular and base are in accordance with the angle [tex]\theta[/tex]

Putting the values, we:

[tex]\tan 6 0^\circ = \displaystyle\frac{ZY}{XZ} = \frac{21\sqrt3}{21} = \sqrt3[/tex]

Option C) [tex]\tan 60^\circ = \sqrt3[/tex]

Answer:

The Answer is C.

Step-by-step explanation: