A sample of 7.90 L of NH3 (ammonia) gas at 22 ∘C and 735 torr is bubbled into a 0.450 L solution of 0.400 M HCl (hydrochloric acid). The Kb value for NH3 is 1.8×10−5. Part A Assuming all the NH3 dissolves and that the volume of the solution remains at 0.450 L , calculate the pH of the resulting solution.

Respuesta :

Answer: The pH of the solution is 9.14

Explanation:

  • For ammonia:

To calculate the amount of hydrogen gas collected, we use the equation given by ideal gas which follows:

[tex]PV=nRT[/tex]

where,

P = pressure of the gas = 735 torr

V = Volume of the gas = 7.90 L

T = Temperature of the gas = [tex]22^oC=[22+273]K=295K[/tex]

R = Gas constant = [tex]62.364\text{ L. torr }mol^{-1}K^{-1}[/tex]

n = number of moles of ammonia = ?

Putting values in above equation, we get:

[tex]735torr\times 7.90L=n\times 62.364\text{ L. torr }mol^{-1}K^{-1}\times 295K\\\\n=\frac{735\times 7.90}{62.364\times 295}=0.316mol[/tex]

  • For hydrochloric acid:

To calculate the number of moles for given molarity, we use the equation:

[tex]\text{Molarity of the solution}=\frac{\text{Moles of solute}}{\text{Volume of solution (in L)}}[/tex]

Molarity of hydrochloric acid = 0.400 M

Volume of solution = 0.450 L

Putting values in above equation, we get:

[tex]0.400M=\frac{\text{Moles of hydrochloric acid}}{0.450L}\\\\\text{Moles of hydrochloric acid}=(0.400\times 0.450)=0.18mol[/tex]

The chemical reaction for ethylamine and HCl follows the equation:

                   [tex]NH_3+HCl\rightarrow NH_4Cl[/tex]

Initial:         0.316   0.18

Final:          0.136     -            0.18

Volume of the solution = 0.450 L

To calculate the pOH of basic buffer, we use the equation given by Henderson Hasselbalch:

[tex]pOH=pK_b+\log(\frac{[salt]}{[base]})[/tex]

[tex]pOH=pK_b+\log(\frac{[NH_4Cl]}{[NH_3]})[/tex]

We are given:

[tex]pK_b[/tex] = negative logarithm of base dissociation constant of ammonia = [tex]-\log(1.8\times 10^{-5})=4.74[/tex]  

[tex][NH_4Cl]=\frac{0.18}{0.450}[/tex]

[tex][NH_3]=\frac{0.136}{0.450}[/tex]

pOH = ?

Putting values in above equation, we get:

[tex]pOH=4.74+\log(\frac{0.18/0.450}{0.136/0.450})\\\\pOH=4.86[/tex]

To calculate pH of the solution, we use the equation:

[tex]pH+pOH=14\\pH=14-4.86=9.14[/tex]

Hence, the pH of the solution is 9.14