A simple random sample from a population with a normal distribution of 106106 body temperatures has x overbarxequals=98.1098.10degrees Upper F°F and sequals=0.610.61degrees Upper F°F. Construct anan 8080​% confidence interval estimate of the standard deviation of body temperature of all healthy humans.

Respuesta :

Answer: (97.084, 99.116)

Step-by-step explanation:

As per given , we have

sample size :n= 106

degree of freedom: df = 105      (df=n-1)

[tex]\overline{x}=98.10\\ s=0.61[/tex]

Significance interval : [tex]\alpha: 1-0.80=0.20[/tex]

Since , population standard deviation is unknown , so we use t-test .

Using t-value table ,

[tex]t_{df,\ \alpha/2}=t_{(105,\ 0.10)}=1.290[/tex]

Now , 80% Confidence interval will be :

[tex]\overline{x}\pm t_{df,\ \alpha/2}\dfrac{s}{\sqrt{n}}[/tex]

[tex]98.10\pm (1.290)\dfrac{0.61}{\sqrt{0.6}}[/tex]

[tex]\approx98.10\pm 1.016[/tex]

[tex]=(98.10- 1.016,\ 98.10+ 1.016)=(97.084,\ 99.116)[/tex]

Thus , The 80​% confidence interval estimate of the standard deviation of body temperature of all healthy humans = (97.084, 99.116).

Using the chi-square distribution, the 80% confidence interval estimate of the standard deviation of body temperature of all healthy humans is (0.5477, 0.6856).

The sample size is [tex]n = 106[/tex]

The significance level is [tex]\alpha = 1 - 0.8 = 0.2[/tex]

The estimate, which is the sample standard deviation, is of [tex]s = 0.61[/tex].

Now, we have to find the critical values for the chi-square distribution. They are:

[tex]\chi^2_{\frac{\alpha}{2},n-1} = \chi^2_{0.05,105} = 129.92[/tex]

[tex]\chi^2_{1-\frac{\alpha}{2},n-1} = \chi^2_{0.95,105} = 82.35[/tex]

The confidence interval for the population variance is:

[tex]\frac{(n-1)s^2}{\chi^2_{\frac{\alpha}{2},n-1}} < \sigma^2 < \frac{(n-1)s^2}{\chi^2_{1-\frac{\alpha}{2},n-1}}[/tex]

[tex]\frac{105(0.61)^2}{129.92} < \sigma^2 < \frac{105(0.61)^2}{82.35}[/tex]

[tex]0.3 < \sigma^2 < 0.47[/tex]

The standard deviation is the square root of the variance, thus:

[tex]\sqrt{0.3} = 0.5477, \sqrt{0.47} = 0.6856[/tex].

The 80​% confidence interval estimate of the standard deviation of body temperature of all healthy humans is (0.5477, 0.6856).

A similar problem is given at https://brainly.com/question/24309021