Answer:
At that moment dB/dt=0
Step-by-step explanation:
The area of a triangle is given by
A=bh/2
A=area, b=base, h=height
If we differentiate over time:
[tex]\frac{dA}{dt} =\frac{dB}{dt}\frac{H}{2} +\frac{dH}{dt}\frac{B}{2}[/tex] (product differentiation)
we have that:
[tex]\frac{dH}{dt}=2.5 cm/m[/tex]
[tex]\frac{dA}{dt}=1.5 sqcm/m[/tex]
When H=8 and A=84 then B is equal to
[tex]84=\frac{8B}{2}[/tex]
[tex]B=21[/tex]
Therefore
[tex]84 =\frac{dB}{dt}\frac{8}{2} +8*\frac{21}{2}[/tex]
[tex]\frac{dB}{dt}=0[/tex]