Answer:
[tex]v_2=24\ m/s[/tex]
Explanation:
It is given that,
Mass of puck 1, [tex]m_1=0.5\ kg[/tex]
Mass of puck 2, [tex]m_2=2\ kg[/tex]
Initial speed of puck 1, [tex]u_1=80\ m/s[/tex]
Initial speed of puck 2, [tex]u_2=0\ m/s[/tex]
After the collision, the speed of puck 1, [tex]v_1=-16\ m/s[/tex]
Let [tex]v_2[/tex] is the final velocity (in m/s) of puck 2 after the collision. Using the conservation of momentum as :
[tex]m_1u_1+m_2u_2=m_1v_1+m_2v_2[/tex]
[tex]0.5\times 80+2\times 0=0.5\times (-16)+2v_2[/tex]
[tex]v_2=24\ m/s[/tex]
So, the final velocity of the puck 2 after the collision is 24 m/s. Hence, this is the required solution.