Answer:
a) P(0)= 0.5832
b) P(1) = 0.3145
c) P(2) = 0.0848
d) P(3) = 0.0153
e) P(4) = 0.0002
Step-by-step explanation:
Number of units in the data(n) = 280
No of homocides(k) = 151
Using Poisson distribution, probability can be calculated as
P(x) = (e^-α * α^x) /x!
α = k/n
α = 151/280
α = 0.5393
a) P(0) =( e^-0.5393 * 0.5393^0) / 0!
= (0.5832 * 1) /1
= 0.5832
b) P(1) =( e^-0.5393 * 0.5393^1) / 1!
= (0.5832 * 0.5393) /1
= 0.3145
c) P(2) =( e^-0.5393 * 0.5393^2) / 2!
= (0.5832 * 0.2908) /2
= 0.1696/2
= 0.0848
d) P(3) =( e^-0.5393 * 0.5393^3) / 3!
= (0.5832 * 0.1569) /6
= 0.0915/6
= 0.0153
e) P(4) =( e^-0.5393 * 0.5393^4) / 4!
= (0.5832 * 0.0846) /24
= 0.0493/24
= 0.0002