Answer:
he total heat capacity of the calorimeter is - 0.09 kJ/K
Explanation:
Given information
the combustion energy of glucose E = 15.57 kJ/g
mass of glucose, m = 1.500 g
initial temperature, [tex]T_{1}[/tex] = 21.45[tex]^{o} C[/tex]
final temperature [tex]T_{2}[/tex] = 23.34[tex]^{o} C[/tex]
the heat capacity of the calorimeter can be determined by
C = Q/ΔT
where
C = heat capacity (kJ/[tex]^{o} C[/tex])
Q = quantity of the heat (kJ)
ΔT = temeperature difference ([tex]^{o} C[/tex])
Q = E m
= - (15.57 kJ/g)(1.500 g)
= 23.355 kJ
ΔT = [tex]T_{2}[/tex]-[tex]T_{1}[/tex]
= 23.34[tex]^{o} C[/tex] - 21.45[tex]^{o} C[/tex]
= 1.89[tex]^{o} C[/tex]
Since the question ask to answer in kJ/k, we need to convert the temperature from celcius to kelvin by adding 273. thus,
ΔT = 1.89[tex]^{o} C[/tex] + 273
= 274.89 K
C = Q/ΔT
= - 23.355 kJ/274.89 K
= - 0.09 kJ/K