Respuesta :
Answer:[tex]\frac{20}{23} ft/s[/tex]
Step-by-step explanation:
Given
Velocity of point A is 2 ft/s
Length of rope is 39 ft
let x be the distance of A from Q and y be the distance of point B from Q
thus From Diagram
[tex]x^2+12^2=L^2[/tex]
Differentiating
[tex]2x\frac{\mathrm{d} x}{\mathrm{d} t}+0=2L\cdot \frac{\mathrm{d} L}{\mathrm{d} t}[/tex]
[tex]x\frac{\mathrm{d} x}{\mathrm{d} t}=L\cdot \frac{\mathrm{d} L}{\mathrm{d} t}[/tex]
at x=5 ft L=13 ft
thus [tex]\frac{\mathrm{d} L}{\mathrm{d} t}=\frac{5\times 2}{13}=\frac{10}{13}[/tex]
For point B
[tex]y^2+12^2=(39-L)^2[/tex]
Differentiate w.r.t time
[tex]2y\frac{\mathrm{d} y}{\mathrm{d} t}+0=2L\cdot \frac{\mathrm{d} 39-L}{\mathrm{d} t}[/tex]
[tex]y\frac{\mathrm{d} y}{\mathrm{d} t}=-(39-L)\cdot \frac{\mathrm{d} (39-L)}{\mathrm{d} t}[/tex]
at [tex]x=5\ ft[/tex]
[tex]y=23 ft[/tex]
thus [tex]\frac{\mathrm{d} y}{\mathrm{d} t}=\frac{-20}{23}ft/s[/tex]

Answer:
[tex]\rm Therefore,velocity\; of\;B = \dfrac {20}{23}[/tex]
Step-by-step explanation:
Given :
Velocity of A = 2ft/s
Rope length = 39 ft
Let x be the distance between A and Q (refer the image).
Let y be the distance between Q and B (refer the image).
Thus from the image,
[tex]x^2 + 12^2 = L^2[/tex]
Now differentiating the above equation with respect to time t
[tex]2x \frac {dx}{dt} +0 = 2L\frac{dL}{dt}[/tex]
at [tex]\rm x = 5 ft[/tex] and [tex]\rm L = 13ft[/tex]
[tex]\dfrac {dL}{dt}= \dfrac{5\times2}{13} = \dfrac{10}{13}[/tex]
For B point,
[tex]y^2 +12^2 = (39-L)^2[/tex] (refer the image)
Now differentiating,
[tex]2y\frac{dy}{dt} + 0 = -2(39-L)\frac{dL}{dt}[/tex]
So, at [tex]\rm x=5ft[/tex] and [tex]\rm y = 23ft[/tex]
[tex]\dfrac {dy}{dt} = \dfrac{-20}{23}[/tex]
(negative sign represents opposite direction)
[tex]\rm Therefore,velocity\; of\; B = \dfrac {20}{23}[/tex]
For more information, refer the link given below
https://brainly.com/question/8127621?referrer=searchResults
