Answer:
[tex]F = 2.42*10^5N[/tex]
Explanation:
We can find the solution through Bernoulli's equation for laminar flow,
[tex]P_1+\frac{1}{2}\rho v_1^2 +\rho gh_1 = P_2 +\frac{1}{2}\rho v_2^2 +\rho gh_2[/tex]
We know that the heights are the same, then
[tex]P_1 = \frac{1}{2}\rho v_1^2 = P_2 + \frac{1}{2} \rho v_2^2[/tex]
[tex]P_1-P_2 = \frac{1}{2} \rho (v^2_2-v^2_1)[/tex]
Pressure is equal to force over Area, so,
[tex]F=\frac{1}{2}\rho(v_2^2-v^2_1)A[/tex]
Our values are,
[tex]\rho = 1.14kg/m^3[/tex]
[tex]v_2 = 45m/s[/tex]
[tex]v_1 = 0[/tex]
[tex]A=210m^2[/tex]
Substituting,
[tex]F= \frac{1}{2}(1.14)(45)^2(210)[/tex]
[tex]F = 2.42*10^5N[/tex]