Answer:
[tex]Q_{cv} = -1007.86kJ[/tex]
Explanation:
Our values are,
State 1
[tex]V=3m^3\\P_1=1bar\\T_1 = 295K[/tex]
We know moreover for the tables A-15 that
[tex]u_1 = 210.49kJ/kg\\h_i = 295.17kJkg[/tex]
State 2
[tex]P_2 =6bar\\T_2 = 296K\\T_f = 320K[/tex]
For tables we know at T=320K
[tex]u_2 = 228.42kJ/kg[/tex]
We need to use the ideal gas equation to estimate the mass, so
[tex]m_1 = \frac{p_1V}{RT_1}[/tex]
[tex]m_1 = \frac{1bar*100kPa/1bar(3m^3)}{0.287kJ/kg.K(295k)}[/tex]
[tex]m_1 = 3.54kg[/tex]
Using now for the final mass:
[tex]m_2 = \frac{p_2V}{RT_2}[/tex]
[tex]m_2 = \frac{1bar*100kPa/6bar(3m^3)}{0.287kJ/kg.K(320k)}[/tex]
[tex]m_2 = 19.59kg[/tex]
We only need to apply a energy balance equation:
[tex]Q_{cv}+m_ih_i = m_2u_2-m_1u_1[/tex]
[tex]Q_{cv}=m_2u_2-m1_u_1-(m_2-m_1)h_i[/tex]
[tex]Q_{cv} = (19.59)(228.42)-(3.54)(210.49)-(19.59-3.54)(295.17)[/tex]
[tex]Q_{cv} = -1007.86kJ[/tex]
The negative value indidicates heat ransfer from the system