Respuesta :

Answer:

[tex]y=-\frac{10}{3}x-23[/tex]

Step-by-step explanation:

we have the points

(-9,7) and (-6,-3)

step 1

Find the slope

The formula to calculate the slope between two points is equal to

[tex]m=\frac{y2-y1}{x2-x1}[/tex]

substitute the values

[tex]m=\frac{-3-7}{-6+9}[/tex]

[tex]m=-\frac{10}{3}[/tex]

step 2

Find the equation in point slope form

[tex]y-y1=m(x-x1)[/tex]

we have

[tex]m=-\frac{10}{3}[/tex]

[tex](x1,y1)=(-6,-3)[/tex]

substitute

[tex]y+3=-\frac{10}{3}(x+6)[/tex]  ---> equation in point slope form

step 3

Find the equation of the line in slope intercept form

[tex]y=mx+b[/tex]

we have

[tex]y+3=-\frac{10}{3}(x+6)[/tex]

Isolate the variable y

Distribute right side

[tex]y+3=-\frac{10}{3}x-20[/tex]

subtract 3 both sides

[tex]y=-\frac{10}{3}x-20-3[/tex]

[tex]y=-\frac{10}{3}x-23[/tex]