Th e molar absorption coeffi cient of a substance dissolved in water is known to be 855 dm3 mol−1 cm−1 at 270 nm. To determine the rate of decomposition of this substance, a solution with a concentration of 3.25 mmol dm−3 was prepared. Calculate the percentage reduction in intensity when light of that wavelength passes through 2.5 mm of this solution.

Respuesta :

Answer : The percentage reduction in intensity is 79.80 %

Explanation :

Using Beer-Lambert's law :

[tex]A=\epsilon \times C\times l[/tex]

[tex]A=\log \frac{I_o}{I}[/tex]

[tex]\log \frac{I_o}{I}=\epsilon \times C\times l[/tex]

where,

A = absorbance of solution

C = concentration of solution = [tex]3.25mmol.dm^{3-}=3.25\times 10^{-3}mol.dm^{-3}[/tex]

l = path length = 2.5 mm = 0.25 cm

[tex]I_o[/tex] = incident light

[tex]I[/tex] = transmitted light

[tex]\epsilon[/tex] = molar absorptivity coefficient = [tex]855dm^3mol^{-1}cm^{-1}[/tex]

Now put all the given values in the above formula, we get:

[tex]\log \frac{I_o}{I}=(855dm^3mol^{-1}cm^{-1})\times (3.25\times 10^{-3}mol.dm^{-3})\times (0.25cm)[/tex]

[tex]\log \frac{I_o}{I}=0.6947[/tex]

[tex]\frac{I_o}{I}=10^{0.6947}=4.951[/tex]

If we consider [tex]I_o[/tex] = 100

then, [tex]I=\frac{100}{4.951}=20.198[/tex]

Here 'I' intensity of transmitted light = 20.198

Thus, the intensity of absorbed light [tex]I_A[/tex] = 100 - 20.198 = 79.80

Now we have to calculate the percentage reduction in intensity.

[tex]\% \text{reduction in intensity}=\frac{I_A}{I_o}\times 100[/tex]

[tex]\% \text{reduction in intensity}=\frac{79.80}{100}\times 100=79.80\%[/tex]

Therefore, the percentage reduction in intensity is 79.80 %