Respuesta :
Answer:
a)[tex]v=13.2171\,m.s^{-1}[/tex]
b)[tex]H=8.9605\,m[/tex]
Explanation:
Given:
mass of bullet, [tex]m=4.97\times 10^{-3}\,kg[/tex]
compression of the spring, [tex]\Delta x=0.0476\,m[/tex]
force required for the given compression, [tex]F=9.12 \,N[/tex]
(a)
We know
[tex]F=m.a[/tex]
where:
a= acceleration
[tex]9.12=4.97\times 10^{-3}\times a[/tex]
[tex]a\approx 1835\,m.s^{-2}\\[/tex]
we have:
initial velocity,[tex]u=0\,m.s^{-1}[/tex]
Using the eq. of motion:
[tex]v^2=u^2+2a.\Delta x[/tex]
where:
v= final velocity after the separation of spring with the bullet.
[tex]v^2= 0^2+2\times 1835\times 0.0476[/tex]
[tex]v=13.2171\,m.s^{-1}[/tex]
(b)
Now, in vertical direction we take the above velocity as the initial velocity "u"
so,
[tex]u=13.2171\,m.s^{-1}[/tex]
∵At maximum height the final velocity will be zero
[tex]v=0\,m.s^{-1}[/tex]
Using the equation of motion:
[tex]v^2=u^2-2g.h[/tex]
where:
h= height
g= acceleration due to gravity
[tex]0^2=13.2171^2-2\times 9.8\times h[/tex]
[tex]h=8.9129\,m[/tex]
is the height from the release position of the spring.
So, the height from the latched position be:
[tex]H=h+\Delta x[/tex]
[tex]H=8.9129+0.0476[/tex]
[tex]H=8.9605\,m[/tex]