Respuesta :
Answer:
[tex]v_{Dox}[/tex]= 10.88 10⁶ m/s
, [tex]v_{Doy}[/tex] = 27.11 10⁶ m/s
Explanation:
This exercise should be solved using the concepts of momentum, as the cores are combined the shock is inelastic.
Let us form a system constituted by the neutron, deuteron and tritium for this system all the forces during the crash are internal so that the moment is conserved. Let us remember that the moment is a vector quantity, so each component must be kept independent of the others.
We establish a nomenclature
Neutron
mₙ = 1.1 u
vₙ₀ = (235 i ^ 14.4 j ^) 10⁶ m/ s
[tex]m_{D[/tex] = 2.01 u
X axis
p₀ₓ = mₙ vₙ₀ₓ + [tex]m_{D[/tex] [tex]v_{Dox}[/tex]
[tex]p_{fx}[/tex] = [tex]m_{T}[/tex] [tex]v_{Tfx}[/tex]
Axis y
[tex]p_{oy}[/tex] = mₙ [tex]v_{noy}[/tex] + [tex]m_{D[/tex] [tex]v_{Doy}[/tex]
[tex]p_{fy}[/tex] = [tex]m_{T[/tex] [tex]v_{Tfy}[/tex]
Let's write the conservation equations of the moment and solve
p₀ₓ = [tex]p_{fx}[/tex]
mₙn vₙ₀ₓ + [tex]m_{D[/tex] [tex]v_{Dox}[/tex] = [tex]m_{T[/tex] vTfx
[tex]m_{D[/tex] [tex]v_{Dox}[/tex] =[tex]m_{T[/tex] [tex]v_{Tfx}[/tex] - mₙ vₙ₀ₓ
[tex]p_{oy}[/tex] = [tex]p_{fy}[/tex]
mₙ [tex]v_{noy}[/tex] + [tex]m_{D[/tex] [tex]v_{Doy}[/tex] = [tex]m_{T[/tex] [tex]v_{Tfy}[/tex]
[tex]m_{D[/tex] [tex]v_{Doy}[/tex] = [tex]m_{T[/tex] [tex]v_{Tfy}[/tex] - mₙ [tex]v_{noy}[/tex
calculate
2.01u [tex]v_{Dox}[/tex] = 3.02u 15.1 - 1.01u 23.5
2.01 [tex]v_{Dox}[/tex]= 21.867
[tex]v_{Dox}[/tex] = 21.867 / 2.01
[tex]v_{Dox}[/tex]= 10.88 10⁶ m / s
2.01u [tex]v_{Doy}[/tex] = 3.02u 22.6 - 1.01 14.4
[tex]v_{Doy}[/tex] = 54.71 10⁶ /2.01
[tex]v_{Doy}[/tex] = 27.11 10⁶ m/s
We have that for the Question, it can be said that the correct deuteron's velocity is
- [tex]v = 10.88i + 26.72j Mm/s[/tex]
From the question we are told
A neutron (mass 1.01 u) strikes a deuteron (mass 2.01 u), and they combine to form a tritium nucleus (mass 3.02 u). The neutron's initial velocity was 23.5i^+14.4j^Mm/s and the tritium nucleus leaves the reaction with velocity 15.1i^+22.6j^Mm/s.
Select the correct d euteron's velocity. Express your answer in terms of i^ and j^. Use the 'unit vector' button to denote unit vectors in your answer.
Generally the equation for the momentum law is mathematically given as
initial=final of the system
[tex](1.01)*(23.5i + 14.4j) + (2.01*v) = (3.02)(15.1i + 22.6j )[/tex]
[tex]v = 10.88i + 26.72j Mm/s[/tex]
For more information on this visit
https://brainly.com/question/23379286