Answer:
v = 0.653 m/s
Explanation:
given,
mass of auto mobile = 941 Kg
spring constant = 2.37 x 10⁶ N/m
compressed by the car = 1.61 cm = 0.0161 m
we have,
[tex]\dfrac{1}{2}kx^2 = \dfrac{1}{2}mv^2[/tex]
[tex]v = \sqrt{\dfrac{kx^2}{m}}[/tex]
[tex]v = \sqrt{\dfrac{2.37\times 10^6\times 0.0161^2}{941}}[/tex]
v = 0.653 m/s
hence, velocity of car before impact is equal to 0.653 m/s