Answer:
The time is [tex]6.07\times10^{-34}\ sec[/tex]
Explanation:
Given that,
Mass of electron [tex]m=9.1\times10^{-31}\ kg[/tex]
Charge of electron [tex]e=-1.6\times10^{-19}\ C[/tex]
Potential difference = 1500 V
Magnetic field = 0.3 T
We need to calculate the speed of electron
Using formula of force
[tex]F_{m}=F_{e}[/tex]
[tex]qvB=eV[/tex]
[tex]v=\dfrac{eV}{qB}[/tex]
[tex]v=\dfrac{1.6\times10^{-19}\times1500}{1.6\times10^{-19}\times0.3}[/tex]
[tex]v=5000\ m/s[/tex]
We need to calculate the time
Using centripetal force
[tex]\dfrac{mv^2}{r}=qvB[/tex]
[tex]\dfrac{r}{v}=\dfrac{m}{qB}[/tex]
Put the value into the formula
[tex]t=\dfrac{9.1\times10^{-31}}{5000\times0.3}[/tex]
[tex]t=6.07\times10^{-34}\ sec[/tex]
Hence, The time is [tex]6.07\times10^{-34}\ sec[/tex]