Answer:
The hoop
Explanation:
We need to define the moment of inertia of the different objects, that is,
DISK:
[tex]I_{disk} = \frac{1}{2} mR^2[/tex]
HOOP:
[tex]I_{hoop} = mR^2[/tex]
SOLID SPHERE:
[tex]I_{ss} = \frac{2}{5}mR^2[/tex]
HOLLOW SPHERE
[tex]I_{hs} = \frac{2}{3}mR^2[/tex]
If we have the same acceleration for a Torque applied, then
[tex]mR^2>\frac{2}{3}mR^2>\frac{1}{2} mR^2>\frac{2}{5}mR^2[/tex]
[tex]I_{hoop}>I_{hs} >I_{disk}>I_{ss}[/tex]
The greatest momement of inertia is for the hoop, therefore will require the largest torque to give the same acceleration