Answer:
[tex]\frac{d[product]}{dt}=K_{3}[A^{-}][HA][/tex]
Explanation:
The multiple steps are:
1) [tex]AH+B--->BH^{+}+A^{-}[/tex]
2) [tex]BH^{+}+A^{-} --->AH + B[/tex]
3) [tex]A^{-}+HA-->Products[/tex]
For carbanion (A⁻) the rate law will be
[tex]\frac{d[A^{-}]}{dt}=K_{1}[AH][B] - K_{2}[A^{-}][BH^{+}]-K_{3}[A^{-}][HA][/tex]...(4)
As here B is in intermediate
so we may apply Steady state approximation (SSA) on it.
[tex]\frac{d[B]}{dt}=-K_{1}[AH][B] +K_{2}[A^{-}][BH^{+}]=0[/tex]
[tex][B]=\frac{K_{2}[A^{-}][BH^{+}]}{K_{1}[AH]}[/tex] ....(5)
Put this in above expression (4)
[tex]\frac{d[A^{-}]}{dt}=K_{1}[AH][\frac{K_{2}[A^{-}][BH^{+}]}{K_{1}[AH]} - K_{2}[A^{-}][BH^{+}]-K_{3}[A^{-}][HA][/tex]
Thus
[tex]\frac{d[A^{-}]}{dt}=-K_{3}[A^{-}][HA][/tex]
This is rate equation for formation of product
[tex]\frac{d[product]}{dt}=K_{3}[A^{-}][HA][/tex]