Respuesta :
The table is an illustration of a linear function.
The relationship between the number of flour and the number of eggs is [tex]\mathbf{f = \frac 32e }[/tex]
The table is given as:
[tex]\mathbf{\left[\begin{array}{ccc} &Flours&Eggs\\Batch\ A&3&2\\Batch\ B&9&6\\Batch\ C& 12& 8 \end{array}\right] }[/tex]
The table represents a linear function
First, calculate the slope (m)
[tex]\mathbf{m = \frac{e_2 - e_1}{f_2 - f_1}}[/tex]
So, we have:
[tex]\mathbf{m = \frac{9-3}{6-2}}[/tex]
[tex]\mathbf{m = \frac{6}{4}}[/tex]
[tex]\mathbf{m = \frac{3}{2}}[/tex]
The equation is then calculated as:
[tex]\mathbf{f = m(e - e_1) + f_1}[/tex]
So, we have:
[tex]\mathbf{f = \frac 32(e - 2) + 3}[/tex]
[tex]\mathbf{f = \frac 32e - 3 + 3}[/tex]
[tex]\mathbf{f = \frac 32e }[/tex]
Hence, the relationship between the number of flour and the number of eggs is [tex]\mathbf{f = \frac 32e }[/tex]
Read more about linear equations at:
https://brainly.com/question/11897796