Respuesta :

Answer:

The coordinates of A are (4,5)

Step-by-step explanation:

we know that

The translation is along the vector (0,-6)

so

The rule of the translation is

(x,y) ------> (x,y-6)

That means -----> The translation is 6 units down

A(x,y) ------> A'(x,y-6)

A'(4,-1)

therefore

A'(x,y-6)=A'(4,-1)

x=4

y-6=-1 -----> y=-1+6 ----> y=5

The coordinates of A are (4,5)

ustsr

The coordinates of A are ( 4 , 5 )

Further explanation

There are several types of transformations:

  1. Translation
  2. Reflection
  3. Rotation
  4. Dilation

Let us now tackle the problem!

[tex]\texttt{ }[/tex]

This problem is about Translation.

Properties of Translation of the images compared to pre-images:

  • preserve Side Length
  • preserve Orientation
  • preserve Collinearity
  • preserve Betweenness of Points
  • preserve Angle Measurement

[tex]\texttt{ }[/tex]

Given :

The image of coordinates A = A' = ( 4 , - 1 )

The translation vector is ( 0 , - 6 )

Let:

A = ( x , y )

[tex]A \overset{(a,b)}{\rightarrow} A'[/tex]

[tex]( x , y ) \overset{(a,b)}{\rightarrow} ( x + a , y + b )[/tex]

[tex]( x , y ) \overset{(0,-6)}{\rightarrow} ( x + 0 , y - 6 )[/tex]

[tex]( x , y ) \overset{(0,-6)}{\rightarrow} ( x , y - 6 ) = ( 4 , - 1 )[/tex]

x = 4

y - 6 = - 1

y = -1 + 6

y = 5

A = ( x , y ) = ( 4 , 5 )

[tex]\texttt{ }[/tex]

Conclusion :

The coordinates of A are ( 4 , 5 )

[tex]\texttt{ }[/tex]

Learn more

  • Inverse of Function : https://brainly.com/question/9289171
  • Rate of Change : https://brainly.com/question/11919986
  • Graph of Function : https://brainly.com/question/7829758
  • Translation : https://brainly.com/question/10929552
  • Translation of Graph : https://brainly.com/question/12091943
  • Transformation Of 2 Functions : https://brainly.com/question/2415963

Answer details

Grade: High School

Subject: Mathematics

Chapter: Transformation

Keywords: Function , Trigonometric , Linear , Quadratic , Translation , Reflection , Rotation , Dilation , Graph , Vertex , Vertices , Triangle , Vector , Image , Pre-Image , Coordinates

Ver imagen ustsr