contestada

Wilson Co. is considering two mutually exclusive projects. Both require an initial investment of $10,000 at t = 0. Project X has an expected life of 2 years with after-tax cash inflows of $6,000 and $8,500 at the end of Years 1 and 2, respectively. In addition, Project X can be repeated at the end of Year 2 with no changes in its cash flows. Project Y has an expected life of 4 years with after-tax cash inflows of $4,600 at the end of each of the next 4 years. Each project has a WACC of 11%. What is the equivalent annual annuity of the most profitable project?a. $1,345.50b. $1,346.30c. $1,361.52d. $1,376.74e. $1,411.15

Respuesta :

Answer:

d. $1,376.74

Explanation:

NPV of Project X is

Year Cash outflow/inflow Present value factor      Present value

0              -$10,000.00                         1                   -$10,000.00

1                 $6,000.00                   0.900901              $5,405.41

2                 $8,500.00                     0.811622              $6,898.79

NPV                                                                        $2,304.20

NPV of Project Y is

Year Cash outflow/inflow Present value factor      Present value

0                -$10,000.00                       1                   -$10,000.00

1                   $4,600.00              0.900901             $4,144.14

2                   $4,600.00                  0.811622             $3,733.46

3                    $4,600.00                   0.731191                   $3,363.48

4                    $4,600.00                  0.658731             $3,030.16

Total                                                                        $4,271.25

Formula for calculation of Equivalent annual annuity is given by:

C = r*(NPV)/(1-(1+r)-n)

Applying the formula for project X, NPV =$2304,20

r = 11%, n = 2

Substituting the values in the above formula

C = 11%*$2304,20/(1-(1+11%)-2

    =$1345.38

Applying the formula for project Y, NPV =$4271.25

r = 11%, n = 4

Substituting the values in the above formula

C = 11%*$4271.25/(1-(1+11%)-4

   = $1376.74

Therefore, most profitable project is Y and its equivalent annual annuity = $1376.74.