18. How many milliliters of water at 23 °C with a density of 1.00 g/mL must be mixed with 180 mL (about 6 oz) of coffee at 95 °C so that the resulting combination will have a temperature of 60 °C? Assume that coffee and water have the same density and the same specific heat.

Respuesta :

Answer:

The number of water that must be mixed in the solution is 170.27 mL

Explanation:

given information :

Temperature of water ([tex]T_{1}[/tex]) = [tex]23^{o}C[/tex]

density of water (ρ) = 1.00 g/mL

Temperature of coffee  ([tex]T_{1}[/tex]) = [tex]95^{o}C[/tex]

volume of coffee ([tex]V_{2}[/tex]) = 180 mL

Mixed Temperature ([tex]T_{mix}[/tex]) = [tex]60^{o}C[/tex]

to calculate the heat, w use the formula :

Q = m x c x ΔT

where

m = mass of the substance (g)

c = specific heat (J/[tex]g^{o}C[/tex])

ΔT = the temperature change ([tex]^{o}C[/tex])

in the mixture solution, the heat of the water ([tex]Q_{1}[/tex]) should be the same as the heat of coffee ([tex]Q_{2}[/tex]). Thus,

[tex]Q_{1}[/tex] = [tex]Q_{2}[/tex]

[tex]m_{1}[/tex] x [tex]c_{1}[/tex] x Δ[tex]T_{1}[/tex] = [tex]m_{2}[/tex] x [tex]c_{2}[/tex] x Δ[tex]T_{2}[/tex]

where

[tex]m_{1}[/tex] is the mass of water

[tex]m_{2}[/tex] is the mass of coffee

[tex]c_{1}[/tex] is the specific heat of water

[tex]c_{2}[/tex] is the specific heat of coffee

Assume coffee and water have the same specific heat. So,

[tex]c_{1}[/tex] = [tex]c_{2}[/tex], we can remove it from the equation.

Hence.

[tex]m_{1}[/tex] x Δ[tex]T_{1}[/tex] = [tex]m_{2}[/tex] x Δ[tex]T_{2}[/tex]

we know that

ρ = [tex]\frac{m}{V}[/tex]

m = ρ x V, subtitute it to the equation:

ρ[tex]_{1}[/tex] x V[tex]_{1}[/tex] x Δ[tex]T_{1}[/tex] = ρ[tex]_{2}[/tex] x V[tex]_{2}[/tex] x Δ[tex]T_{2}[/tex]

[tex]V_{1}[/tex] is the volume of water

coffee and water have the same density, so we can remove the formula

V[tex]_{1}[/tex] x Δ[tex]T_{1}[/tex] = V[tex]_{2}[/tex] x Δ[tex]T_{2}[/tex]

V[tex]_{1}[/tex] = (V[tex]_{2}[/tex] x Δ[tex]T_{2}[/tex]) / Δ[tex]T_{1}[/tex]

V[tex]_{1}[/tex] = V[tex]_{2}[/tex] x ([tex]\frac{(T_{2} - T_{mix}) }{(T_{mix} - T_{1})}[/tex]

V[tex]_{1}[/tex] = 180 mL x [tex]\frac{(95-60)^{o}C}{(60-23)^{o}C}[/tex]

V[tex]_{1}[/tex] = 180 mL x [tex]\frac{(35)^{o}C}{(37)^{o}C}[/tex]

V[tex]_{1}[/tex] = 170.27 mL