Answer:
t = 1790.4718 s
Explanation:
Given Data:
rho = 7800 kg/m
c =480 J/kg⋅K
k = 50 W/m⋅K
Ti = 300°C
Ts = 25°C
x = 25 mm = 0.025 m
[tex]\frac{T(x,t)-Ts}{Ti-Ts} =erf(\frac{x}{2\sqrt[]{\alpha t} } )[/tex]
[tex]\frac{50-25}{300-25} =erf(\frac{x}{2\sqrt[]{\alpha t} } )[/tex]
[tex]\frac{x}{2\sqrt[]{\alpha t} }=0.0909[/tex]
Finding in Error Function table, we have
[tex]\frac{x}{2\sqrt[]{\alpha t} }=0.0807[/tex]
[tex]\frac{x^{2} }{4\alpha t} =(0.0807)^{2}[/tex]
[tex]t=\frac{x^{2} }{(0.0807)^{2}*4\alpha }[/tex]
[tex]\alpha =\frac{k}{rho*c} =\frac{50 W/m ⋅ K}{7800 kg/m*480 J/kg⋅K} =1.34x10^{-5} m^{2}/s[/tex]
[tex]t=\frac{(0.025m)^{2} }{(0.0807)^{2}*4*1.34x10^{-5} m^{2}/s }[/tex]
[tex]t=\frac{0.000625m^{2}}{0.02605*1.34x10^{-5} m^{2}/s }[/tex]
t = 1790.4718 s
Hope this helps!