Respuesta :

Answer:

[tex]8° = y[/tex]

[tex]12° = x[/tex]

________________

[tex]11° = z[/tex]

[tex]7° = y[/tex]

[tex]23 = x[/tex]

Step-by-step explanation:

What you need to know

- [tex]m∠K ≅ m∠W; KB = WM[/tex]

- [tex]m∠G ≅ m∠T; KG = WT[/tex]

- [tex]m∠B ≅ m∠M; GB = TM[/tex]

45° = [4x - 3]°

+ 3° + 3°

____________

[tex]\frac{48°}{4°} = \frac{[4x]°}{4°} \\ \\ 12° = x[/tex]

Then use the Triangular Interior Angles Theorem to find the [tex]m∠M[/tex]then set that equal to the [tex]m∠B[/tex]:

180° = 41° + 45° + [tex]m∠M[/tex]

180° = 86° + [tex]m∠M[/tex]

- 86° - 86°

______________

94° = [tex]m∠M[/tex]

94° = [11y + 6]°

- 6° - 6°

__________

[tex]\frac{88°}{11°} = {[11y]°}{11°} \\ \\ 8° = y[/tex]

_______________________________________________

What you need to know

- [tex]m∠H ≅ m∠S; HC = SP[/tex]

- [tex]m∠F ≅ m∠R; CS = RP[/tex]

- [tex]m∠C ≅ m∠P; HF = SR[/tex]

90° = [13y - 1]°

+ 1° + 1°

______________

[tex]\frac{91°}{13°} = \frac{[13y]°}{13°} \\ \\ 7° = y \\ \\ 90° = m∠R[/tex]

Then use the Triangular Interior Angles Theorem to find the [tex]m∠S[/tex]then set that equal to the [tex]m∠H[/tex]:

180° = 28° + 90° + [tex]m∠S[/tex]

180° = 118° + [tex]m∠S[/tex]

- 118° - 118°

______________

62° = [tex]m∠S[/tex]

62° = [6z - 4]°

+ 4° + 4°

____________

[tex]\frac{66°}{6°} = \frac{[6z]°}{6°} \\ \\ 11° = z[/tex]

I am joyous to assist you anytime.