Y’all I need help on #9

Answer:
[tex]8° = y[/tex]
[tex]12° = x[/tex]
________________
[tex]11° = z[/tex]
[tex]7° = y[/tex]
[tex]23 = x[/tex]
Step-by-step explanation:
What you need to know
- [tex]m∠K ≅ m∠W; KB = WM[/tex]
- [tex]m∠G ≅ m∠T; KG = WT[/tex]
- [tex]m∠B ≅ m∠M; GB = TM[/tex]
45° = [4x - 3]°
+ 3° + 3°
____________
[tex]\frac{48°}{4°} = \frac{[4x]°}{4°} \\ \\ 12° = x[/tex]
Then use the Triangular Interior Angles Theorem to find the [tex]m∠M[/tex]then set that equal to the [tex]m∠B[/tex]:
180° = 41° + 45° + [tex]m∠M[/tex]
180° = 86° + [tex]m∠M[/tex]
- 86° - 86°
______________
94° = [tex]m∠M[/tex]
94° = [11y + 6]°
- 6° - 6°
__________
[tex]\frac{88°}{11°} = {[11y]°}{11°} \\ \\ 8° = y[/tex]
_______________________________________________
What you need to know
- [tex]m∠H ≅ m∠S; HC = SP[/tex]
- [tex]m∠F ≅ m∠R; CS = RP[/tex]
- [tex]m∠C ≅ m∠P; HF = SR[/tex]
90° = [13y - 1]°
+ 1° + 1°
______________
[tex]\frac{91°}{13°} = \frac{[13y]°}{13°} \\ \\ 7° = y \\ \\ 90° = m∠R[/tex]
Then use the Triangular Interior Angles Theorem to find the [tex]m∠S[/tex]then set that equal to the [tex]m∠H[/tex]:
180° = 28° + 90° + [tex]m∠S[/tex]
180° = 118° + [tex]m∠S[/tex]
- 118° - 118°
______________
62° = [tex]m∠S[/tex]
62° = [6z - 4]°
+ 4° + 4°
____________
[tex]\frac{66°}{6°} = \frac{[6z]°}{6°} \\ \\ 11° = z[/tex]
I am joyous to assist you anytime.