Answer:
The value of x for the given expression is (95/27)
Step-by-step explanation:
Here, the given expression is:
[tex]\frac{1}{5} x + \frac{1}{3} = 3(\frac{2}{3}x -2)[/tex]
Now here solving for the value of x , we get
[tex]\frac{1}{5} x + \frac{1}{3} = 3(\frac{2}{3}x) -6\\\implies\frac{1}{5} x + \frac{1}{3} = 2x -6[/tex]
Now, taking the variable terms on 1 side, we get
[tex]\frac{1}{5} x - 2x = -6 - \frac{1}{3} \\\implies\frac{x - 10x}{5} = -(\frac{6(3) +1}{3} )[/tex]
or, [tex]\frac{-9x}{5} = -\frac{19}{3} \implies x = \frac{19}{3} \times\frac{5}{9} = \frac{95}{27}[/tex]
Hence, the value of x = (95/27)