Respuesta :

Answer:

The value of x  for the given expression is  (95/27)

Step-by-step explanation:

Here, the given expression is:

[tex]\frac{1}{5} x + \frac{1}{3}   = 3(\frac{2}{3}x -2)[/tex]

Now here  solving for the value of x , we get

[tex]\frac{1}{5} x + \frac{1}{3}   = 3(\frac{2}{3}x) -6\\\implies\frac{1}{5} x + \frac{1}{3}   = 2x -6[/tex]

Now, taking the variable terms on 1 side, we get

[tex]\frac{1}{5} x   - 2x   = -6 -  \frac{1}{3} \\\implies\frac{x  - 10x}{5}   = -(\frac{6(3)  +1}{3} )[/tex]

or, [tex]\frac{-9x}{5}   = -\frac{19}{3}   \implies x  = \frac{19}{3}  \times\frac{5}{9}   = \frac{95}{27}[/tex]

Hence,  the value of x = (95/27)