Answer:
(a) [tex]-7.95 m/s^{2}[/tex]
(b) 43.45 m
(c) 12.58 m
Explanation:
By applying newton's law on car,
[tex]F_{net}=ma[/tex] where [tex]F_{net}[/tex]is the friction force and m is mass, a is acceleration
[tex]F_{net}=F_r = -\mu*m*g[/tex]
[tex]g=9.8 m/s^{2}[/tex]
a = acceleration of car [tex]a=\frac {f_r}{m}[/tex]
[tex]a=-\mu*g=0.811*9.8[/tex]
[tex]a=-7.9478 m/s^{2}\approx -7.95 m/s^{2}[/tex]
(b)
From kinematic equation
[tex]v^{2}=u^{2}+2as[/tex] but u=0 hence
[tex]v^{2}=2as[/tex] and making s the subject
[tex]s=\frac {v^{2}}{2a}[/tex]
[tex]s=\frac {-26.3^{2}}{2*-7.95}=43.50252\approx 43.50 m[/tex]
(c
From the kinematic equation
[tex]s=ut+0.5at^{2}[/tex]
[tex]s=26.30.519+0.5(-7.95*0.519^{2})=13.6497-1.07071=12.57899\approx 12.58 m[/tex]