please please please help with my math problem. Thanks :)

Answer:
[tex]\sqrt{51}/10[/tex]
Step-by-step explanation:
Given that:
sinФ = 7/10
Putting in Pythagoras theorem:
(7/10)^2 + cos^2 Ф = 1
49/100 + cos^2 Ф = 1
Subtracting 49/100 on both sides:
cos^2 Ф = 1 - 49/100
By taking LCM
cos^2 Ф = (100 - 49)/100
cos^2 Ф = 51/100
Taking square root on both sides we get:
cos Ф = [tex]\sqrt{51}[/tex]/100
I hope it will help you!
Answer:
cosΘ = [tex]\frac{\sqrt{51} }{10}[/tex]
Step-by-step explanation:
Using the trigonometric identity
sin²x + cos²x = 1 ⇒ cosx = ± [tex]\sqrt{1-sin^2x}[/tex]
Given
sinΘ = [tex]\frac{7}{10}[/tex], then
cosΘ = ± [tex]\sqrt{1-(7/10)^2}[/tex] = ± [tex]\sqrt{1-\frac{49}{100} }[/tex] = ± [tex]\sqrt{\frac{51}{100} }[/tex] = ± [tex]\frac{\sqrt{51} }{10}[/tex]
Since Θ is in first quadrant then cosΘ > 0
cosΘ = [tex]\frac{\sqrt{51} }{10}[/tex]