Respuesta :

CPED

Answer:

[tex]\sqrt{51}/10[/tex]

Step-by-step explanation:

Given that:

sinФ = 7/10

Putting in Pythagoras theorem:

(7/10)^2 + cos^2 Ф = 1

49/100 + cos^2 Ф = 1

Subtracting 49/100 on both sides:

cos^2 Ф = 1 - 49/100

By taking LCM

cos^2 Ф = (100 - 49)/100

cos^2 Ф = 51/100

Taking square root on both sides we get:

cos Ф = [tex]\sqrt{51}[/tex]/100

I hope it will help you!

Answer:

cosΘ = [tex]\frac{\sqrt{51} }{10}[/tex]

Step-by-step explanation:

Using the trigonometric identity

sin²x + cos²x = 1 ⇒ cosx = ± [tex]\sqrt{1-sin^2x}[/tex]

Given

sinΘ = [tex]\frac{7}{10}[/tex], then

cosΘ = ± [tex]\sqrt{1-(7/10)^2}[/tex] = ± [tex]\sqrt{1-\frac{49}{100} }[/tex] = ± [tex]\sqrt{\frac{51}{100} }[/tex] = ± [tex]\frac{\sqrt{51} }{10}[/tex]

Since Θ is in first quadrant then cosΘ > 0

cosΘ = [tex]\frac{\sqrt{51} }{10}[/tex]