Respuesta :

then Cos would be 4/5

Answer:

cosΘ = [tex]\frac{4}{5}[/tex]

Step-by-step explanation:

Using the trigonometric identity

sin²x + cos²x = 1 ⇒ cosx = ± [tex]\sqrt{1-sin^2x}[/tex]

Given

sinΘ = [tex]\frac{3}{5}[/tex], then

cosΘ = ± [tex]\sqrt{1-(3/5)^2}[/tex] = ± [tex]\sqrt{1-\frac{9}{25} }[/tex] = ± [tex]\sqrt{\frac{16}{25} }[/tex] = ± [tex]\frac{4}{5}[/tex]

Since Θ is in first quadrant then cosΘ > 0

cosΘ = [tex]\frac{4}{5}[/tex]