Respuesta :

CPED

Answer:

cos Ф = 11/12

Step-by-step explanation:

Given that:

sinФ = [tex]\sqrt{23}/12[/tex]

Putting in Pythagoras theorem:

([tex]\sqrt{23}/12[/tex])^2 + cos^2 Ф = 1

23/144 + cos^2 Ф = 1

Subtracting 23/144 on both sides:

cos^2 Ф = 1 - 23/144

By taking LCM

cos^2 Ф = (144 - 23)/144

cos^2 Ф = 121/144

Taking square root on both sides we get:

cos Ф = 11/12

I hope it will help you!

Answer:

cosΘ = [tex]\frac{11}{12}[/tex]

Step-by-step explanation:

Using the trigonometric identity

sin²x + cos²x = 1 ⇒ cosx = ± [tex]\sqrt{1-sin^2x}[/tex]

Given

sinΘ = [tex]\frac{\sqrt{23} }{12}[/tex], then

cosΘ = ± [tex]\sqrt{1-(\frac{\sqrt{23} }{12} }[/tex])² = ± [tex]\sqrt{1-\frac{23}{144} }[/tex] = ± [tex]\sqrt{\frac{121}{144} }[/tex] = ± [tex]\frac{11}{12}[/tex]

Since Θ is in first quadrant then cosΘ > 0

cosΘ = [tex]\frac{11}{12}[/tex]