please help with my math problem! Thank you :)

Answer:
cos Ф = 11/12
Step-by-step explanation:
Given that:
sinФ = [tex]\sqrt{23}/12[/tex]
Putting in Pythagoras theorem:
([tex]\sqrt{23}/12[/tex])^2 + cos^2 Ф = 1
23/144 + cos^2 Ф = 1
Subtracting 23/144 on both sides:
cos^2 Ф = 1 - 23/144
By taking LCM
cos^2 Ф = (144 - 23)/144
cos^2 Ф = 121/144
Taking square root on both sides we get:
cos Ф = 11/12
I hope it will help you!
Answer:
cosΘ = [tex]\frac{11}{12}[/tex]
Step-by-step explanation:
Using the trigonometric identity
sin²x + cos²x = 1 ⇒ cosx = ± [tex]\sqrt{1-sin^2x}[/tex]
Given
sinΘ = [tex]\frac{\sqrt{23} }{12}[/tex], then
cosΘ = ± [tex]\sqrt{1-(\frac{\sqrt{23} }{12} }[/tex])² = ± [tex]\sqrt{1-\frac{23}{144} }[/tex] = ± [tex]\sqrt{\frac{121}{144} }[/tex] = ± [tex]\frac{11}{12}[/tex]
Since Θ is in first quadrant then cosΘ > 0
cosΘ = [tex]\frac{11}{12}[/tex]