Respuesta :
Answer:
0.927
Step-by-step explanation:
The value can be estimated using the binomial theorem for expanding numbers. The theorem states:
For an expansion
[tex](1+x)^{n} = 1+ \frac{n}{1}x+\frac{n(n-1)}{1*2} x^{2} + ...[/tex]
Now, let's take the value 0.6289731. In the expression, let 0.6289731 be equal to [tex]( 1 - 0.0371)[/tex]
We can use the binomial expansion above:
[tex](1-0.0371)^{2} = 1+ (-)\frac{(2)}{1} (0.0371) + \frac{2(2-1)}{1*2} (-0.0371)^{2} + ...[/tex] up to three terms
This gives 1-0.0734+0.00137641 = 0.927 up to 3 decimal places