Choose all the functions that give the sequence:

3, 5, 7, 9, 11, 13, ...

f(n) = 2n − 1
f(n) = 2n + 1
f(n) = 2(n − 1) − 3
f(n) = 2(n − 1) + 3

Respuesta :

Hence, the functions that produce given sequence are:

f(n) = 2n + 1

f(n) = 2(n − 1) + 3

Further explanation:

We will put n=1,2,3,4,5 to find which functions give the given sequence

f(n) = 2n − 1

Putting values of n

[tex]f(1)=2(1)-1=2-1=1\\f(2)=2(2)-1=4-1=3\\f(3)=2(3)-1=6-1=5[/tex]

This function doesn't generate the given sequence

f(n) = 2n + 1

Putting values of n

[tex]f(1)=2(1)+1=2+1=3\\f(2)=2(2)+1=4+1=5\\f(3)=2(3)+1=6+1=7\\f(4)=2(4)+1=8+1=9\\f(5)=2(5)+1=10+1=11[/tex]

This function generates the given sequence.

f(n) = 2(n − 1) − 3

Putting values of n

[tex]f(1) = 2(1 -1) -3=2(0)-3=0-3=-3\\f(2) = 2(2 -1) -3=2(1)-3=2-3=-1\\f(3) = 2(3-1) -3=2(2)-3=4-3=1[/tex]

This function doesn't generate the given sequence

f(n) = 2(n − 1) + 3

Putting values of n

[tex]f(1) = 2(1 - 1) + 3=2(0)+3=0+3=3\\f(2) = 2(2 - 1) + 3=2(1)+3=2+3=5\\f(3) = 2(3 - 1) + 3=2(2)+3=4+3=7\\f(4) = 2(4 - 1) + 3=2(3)+3=6+3=9[/tex]

Hence, the functions that produce given sequence are:

f(n) = 2n + 1

f(n) = 2(n − 1) + 3

Keywords: Functions, Sequence

Learn more about functions at:

  • brainly.com/question/3071107
  • brainly.com/question/3126500

#LearnwithBrainly