contestada

In a right triangle the cosine of an acute angle is 1/2 and the hypotenuse measures 7 inches. What is the length of the side of the triangle adjacent to this angle?

Respuesta :

Answer:

The length of side adjacent to the cosine angle is  [tex]\frac{7}{2}[/tex]  inches

Step-by-step explanation:

Given as :

For a right triangle ,

Cosine of an acute angle = [tex]\frac{1}{2}[/tex]

I.e                            cos Ф =  [tex]\frac{1}{2}[/tex]

And, The measure of hypotenuse = 7 inches

Let the length of side adjacent to the cos Ф = x inches

SO,                           cos Ф =  [tex]\frac{Base}{Hypotenuse}[/tex]

Or,                            cos Ф =  [tex]\frac{Base}{7}[/tex]

Or,                             Base   = 7  × cosФ

Or,                             Base   = 7 ×  [tex]\frac{1}{2}[/tex]

∴                                Base   =  [tex]\frac{7}{2}[/tex]  inches

Hence The length of side adjacent to the cosine angle is  [tex]\frac{7}{2}[/tex]  inches  Answer

Answer:

The length of the side adjacent to the angle is 3.5 inches

Step-by-step explanation:

Here,given the cosine of an acute angle = 1/2

Let that acute angle be  Ф

⇒ cos Ф = 1/2

Also, [tex]\cos  \theta = \frac{Base}{Hypotenuse}[/tex]

⇒ [tex]\frac{Base}{Hypotenuse}  =  \frac{1}{2}[/tex]

or, the ratio of Base : Hypotenuse is 1  : 2

Now, Hypotenuse =  7 inches (given)

⇒  [tex]\frac{1}{2}   =  \frac{Base}{7}   \implies Base = \frac{7}{2}  = 3.5[/tex]

Hence, the length of the side adjacent to the angle is 3.5 inches