Respuesta :
Answer:
The length of side adjacent to the cosine angle is [tex]\frac{7}{2}[/tex] inches
Step-by-step explanation:
Given as :
For a right triangle ,
Cosine of an acute angle = [tex]\frac{1}{2}[/tex]
I.e cos Ф = [tex]\frac{1}{2}[/tex]
And, The measure of hypotenuse = 7 inches
Let the length of side adjacent to the cos Ф = x inches
SO, cos Ф = [tex]\frac{Base}{Hypotenuse}[/tex]
Or, cos Ф = [tex]\frac{Base}{7}[/tex]
Or, Base = 7 × cosФ
Or, Base = 7 × [tex]\frac{1}{2}[/tex]
∴ Base = [tex]\frac{7}{2}[/tex] inches
Hence The length of side adjacent to the cosine angle is [tex]\frac{7}{2}[/tex] inches Answer
Answer:
The length of the side adjacent to the angle is 3.5 inches
Step-by-step explanation:
Here,given the cosine of an acute angle = 1/2
Let that acute angle be Ф
⇒ cos Ф = 1/2
Also, [tex]\cos \theta = \frac{Base}{Hypotenuse}[/tex]
⇒ [tex]\frac{Base}{Hypotenuse} = \frac{1}{2}[/tex]
or, the ratio of Base : Hypotenuse is 1 : 2
Now, Hypotenuse = 7 inches (given)
⇒ [tex]\frac{1}{2} = \frac{Base}{7} \implies Base = \frac{7}{2} = 3.5[/tex]
Hence, the length of the side adjacent to the angle is 3.5 inches