Respuesta :

The coordinates of the point that divides the line segment directed

from A to B in the ratio of 1 : 2 are ( [tex]6\frac{2}{3}[/tex] , 4)

Step-by-step explanation:

If point (x , y) divides a line segment whose endpoints are [tex](x_{1},y_{1})[/tex]

and [tex](x_{2},y_{2})[/tex] at ratio [tex]m_{1}:m_{2}[/tex] from [tex](x_{1},y_{1})[/tex] , then

  • [tex]x=\frac{x_{1}m_{2}+x_{2}m_{1}}{m_{1}+m_{2}}[/tex]
  • [tex]y=\frac{y_{1}m_{2}+y_{2}m_{1}}{m_{1}+m_{2}}[/tex]

∵ Line segment AB has endpoints A(9 , 3) and B(2 , 6)

∵ Point (x , y) divides the line segment from A to B in the ratio of 1 : 2

∴ [tex]x_{1}[/tex] = 9 and [tex]y_{1}[/tex] = 3

∴ [tex]x_{2}[/tex] = 2 and [tex]y_{2}[/tex] = 6

∴ [tex]m_{1}:m_{2}[/tex] = 1 : 2

Substitute these values in the rules above to find x and y

∴ [tex]x=\frac{(9)(2)+(2)(1)}{1+2}[/tex]

∴ [tex]x=\frac{18+2}{3}[/tex]

∴ [tex]x=\frac{20}{3}[/tex]

∴ x = [tex]6\frac{2}{3}[/tex]

∴ [tex]y=\frac{(3)(2)+(6)(1)}{1+2}[/tex]

∴ [tex]y=\frac{6+6}{3}[/tex]

∴ [tex]y=\frac{12}{3}[/tex]

∴ y = 4

The coordinates of the point that divides the line segment directed

from A to B in the ratio of 1 : 2 are ( [tex]6\frac{2}{3}[/tex] , 4)

Learn more:

You can learn more about point of division in brainly.com/question/5223123

#LearnwithBrainly

Answer:

20/3, 4

Step-by-step explanation: