Respuesta :

Answer:17

Step-by-step explanation:

Answer:

37°

Step-by-step explanation:

We know that [tex]\angle VST[/tex] and [tex]\angle VUT[/tex] are opposite angles in a quadrilateral.

If we assume that the quadrilateral is a parallelogram, then those angles are equal, so

[tex]\angle VST = \angle VUT\\5x+23=8x-49[/tex]

Then, we solve for [tex]x[/tex]

[tex]23+49=8x-5x\\3x=72\\x=\frac{72}{3}\\ x=24[/tex]

Now, we use this value to find VST angle

[tex]\angle VST=5x+23=5(24)+23=143\°[/tex]

On the other hand, the sum of all four internal angles can be expressed as

[tex]2(\angle VST)+2(\angle SVT)=360\°[/tex]

Solving for SVT

[tex]2(143)+2(\angle SVT)=360\°\\\angle SVT = \frac{360\° - 286\°}{2}=37\°[/tex]

Therefore, the answer is 37°.