Respuesta :

Answer:

55.52°

Explanation:

Concept tested: Sine rule of triangles

We need to know the sine rule

  • According to sine rule, if the three sides of a triangle are a, b and c and the corresponding angles, A, B and C
  • Then, [tex]\frac{a}{SinA}=\frac{b}{SinB}=\frac{c}{SinC}[/tex]

In this case;

  • If we take, a = 5.7 units and A = 70°, and

         b= 5 units, B = x°

  • Using the sine rule we can find the value of x

Therefore;

[tex]\frac{a}{SinA}=\frac{b}{SinB}[/tex]

Then;

[tex]\frac{5.7}{Sin70}=\frac{5}{Sinx}[/tex]

[tex]6.0658=\frac{5}{sinx}[/tex]

[tex]Sinx=0.8243[/tex]

Therefore, X = 55.52°

Therefore, the value of x in the triangle is 55.52°