Respuesta :

Answer:

[tex]f(1)=2[/tex]

Step-by-step explanation:

Given:

[tex]f(x)=\sqrt{10-x}-x[/tex]

[tex]f(x) =2[/tex]

[tex]\sqrt{10-x}-x=2\\\sqrt{10-x}=x+2[/tex]

Squaring both sides, we get

[tex](\sqrt{10-x})^{2}=(x+2)^{2}\\10-x=x^{2}+4+4x\\x^{2}+4x+x+4-10=0\\x^{2}+5x-6=0\\(x-1)(x+6)=0\\x=1\textrm{ or }x=-6[/tex]

Therefore, the possible values of [tex]x[/tex] for which [tex]f(x)=2[/tex] are -6 and 1.

Therefore, [tex]f(1)=2[/tex]