Answer: 3.88 N
Explanation:
From the question we have the following:
cork diameter (D1) = 2.3 cm = 0.023 m
bottom diameter (D2) = 13 cm = 0.13 m
force on the cork (F1) = 120 N
force at the bottom (F2) = ?
we can get the force at the bottom by applying the formula below
[tex]\frac{F1}{A1}[/tex] = [tex]\frac{F2}{A2}[/tex]
therefore
F2 = [tex]\frac{F1}{A1}[/tex] × A2
where A1 and A2 are the areas of the cork and bottom respectively
A1 = π×[tex]r^{2}[/tex] = π×[tex](0.023 ÷ 2 )^{2}[/tex] = 0.00042
A2 = π×[tex]r^{2}[/tex] = π×[tex](0.13 ÷ 2 )^{2}[/tex] = 0.013
now substituting all values into F2 = [tex]\frac{F1}{A1}[/tex] × A2
F2 = [tex]\frac{120}{0.00042}[/tex] × 0.013
F2 = 3.88 N