Answer:
A. [tex]y=-1.2x+59[/tex]
B. 42.2 million
Step-by-step explanation:
Part A:
Given:
Newspapers circulated in year 2004, [tex]y_{1}=59\textrm{ million}[/tex]
Newspapers circulated in year 2014, [tex]y_{2}=47\textrm{ million}[/tex]
Let the time [tex]x[/tex] start at the year 2004. So, [tex]x_{1}=0[/tex]
For the year 2014, [tex]x_{2}=2014-2004=10[/tex]
Therefore, linear relationship between newspapers circulated and time passed since 2004 is given as:
[tex]y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}(x-x_{1})\\y-59=\frac{47-59}{10-0}(x-0)\\y-59=-\frac{12}{10}x\\y=-1.2x+59[/tex]
Therefore, the equation describing the relationship is: [tex]y=-1.2x+59[/tex]
Part B:
For the year 2018, [tex]x=2018-2004=14[/tex]
Plug in 14 for [tex]x[/tex] in the above equation and solve for [tex]y[/tex]. This gives,
[tex]y=-1.2(14)+59\\y=-16.8+59\\y=42.2[/tex]
Therefore, in the year 2018, the newspaper circulation will be 42.2 million.