Respuesta :

Answer:

The given expression is simplified as [tex]\frac{(x+3)^2-(x^2 +9)} {2x^2}  = \frac{3}{x}[/tex]

Step-by-step explanation:

Here, the given expression is:

[tex]\frac{(x+3)^2-(x^2 +9)} {2x^2}[/tex]

Now, with ALGEBRAIC IDENTITIES:

[tex](a+b)^2  = a^2 + b^2 + 2ab[/tex]

Now, similarly: [tex](x+3)^2  = x^2 + (3)^2 + 2x(3)   = (x^2  + 9 + 6x)[/tex]

Now, substituting the values in the given expression, we get:

[tex]\frac{(x+3)^2-(x^2 +9)} {2x^2} \implies \frac{(x^2  + 9 + 6x)-(x^2 +9)} {2x^2}\\=  \frac{(x^2  + 9 + 6x-x^2  -9)} {2x^2} \\=  \frac{ 6x} {2x^2}  = \frac{3}{x}[/tex]

Hence, the given expression [tex]\frac{(x+3)^2-(x^2 +9)} {2x^2}  = \frac{3}{x}[/tex]

Answer:

It is A

Step-by-step explanation:

edge 2020