Let X denote the distance (m) that an animal moves from its birth site to the first territorial vacancy it encounters. Suppose that for banner-tailed kangaroo rats, X has an exponential distribution with parameter λ = .01386 (as suggested in the article "Competition and Dispersal from Multiple Nests, " Ecology, 1997: 873-883). What is the probability that the distance is at most 100 m? At most 200 m?

Respuesta :

Answer:

P( The distance is at most 100 m) = 0.7499263989

P( The distance is at most 200 m) = 0.937463194

Step-by-step explanation:

For  the banner-tailed Kangaroo rats, X has an exponential distribution  with parameter [tex]\lambda[/tex]  = 0.01386

So, probability distribution of X is given by,

[tex]f_{X}(x)[/tex] =  [tex]\lambda \times {e^{-(\lambda \times x)}}[/tex]

               for 0 ≤ x < ∞      where [tex]\lambda[/tex] = 0.01386

                            = 0  otherwise

so,

P( X ≤ 100) =[tex]\int_{0}^{100}(\lambda \times {e^{-(\lambda \times x)}})dx[/tex]

                = [tex][- e^{-x \times \lambda}]_{0}^{100}[/tex]----------------(2)

                =1 - [tex]e^{- 100 \times 0.01386}}[/tex]

                = 0.7499263989

so , P(X ≤ 200)   

= 1 - [tex]e^{- 200 \times 0.01386}}[/tex]

                = 0.937463194

                 =