Answer:
P( The distance is at most 100 m) = 0.7499263989
P( The distance is at most 200 m) = 0.937463194
Step-by-step explanation:
For the banner-tailed Kangaroo rats, X has an exponential distribution with parameter [tex]\lambda[/tex] = 0.01386
So, probability distribution of X is given by,
[tex]f_{X}(x)[/tex] = [tex]\lambda \times {e^{-(\lambda \times x)}}[/tex]
for 0 ≤ x < ∞ where [tex]\lambda[/tex] = 0.01386
= 0 otherwise
so,
P( X ≤ 100) =[tex]\int_{0}^{100}(\lambda \times {e^{-(\lambda \times x)}})dx[/tex]
= [tex][- e^{-x \times \lambda}]_{0}^{100}[/tex]----------------(2)
=1 - [tex]e^{- 100 \times 0.01386}}[/tex]
= 0.7499263989
so , P(X ≤ 200)
= 1 - [tex]e^{- 200 \times 0.01386}}[/tex]
= 0.937463194
=