Answer:
D. [tex]n + n + 2 + n + 4 + n + 6 = -72; n = -21; n + 2 = -19; n + 4 = -17;n + 6=-15[/tex]
Step-by-step explanation:
Given:
The sum of four consecutive odd integers is -72.
Let the 4 consecutive odd integers be [tex]n,n+2,n+4,\textrm{ and }n+6[/tex]
Now, as per question,
[tex]n + (n + 2) + (n + 4) + (n + 6) = -72\\n+n+n+n+2+4+6=-72\\4n+12=-72\\4n=-72-12\\4n=-84\\n=-\frac{84}{4}=-21[/tex]
Therefore, the consecutive integers are:
[tex]n=-21\\n+2=-21+2=-19\\n+4=-21+4=-17\\n+6=-21+6=-15[/tex]
Hence, the correct option is option D.