Respuesta :
Answer:
[tex]2.2508\times 10^{19} m[/tex] meter the mean free path of hydrogen atoms in interstellar space.Explanation:
The mean free path equation is given as:
[tex]\lambda =\frac{1}{\sqrt{2}\pi d^2 n}[/tex]
Where"
d = diameter of hydrogen atom in meters
n = number of molecules per unit volume
We are given: d = 100 pm = [tex]100\times 10^{-12}= 10^{-10} m[/tex]
[tex]n = 1 m^{-3}[/tex]
[tex]\lambda =\frac{1}{\sqrt{2}\pi (10^{-10} m)^2\times 1 m^{-3}}[/tex]
[tex]\lambda =2.2508\times 10^{19} m[/tex]
[tex]2.2508\times 10^{19} m[/tex] meter the mean free path of hydrogen atoms in interstellar space.
The mean free path of hydrogen atoms in interstellar space is [tex]2.25 \times 10^{17}[/tex] meters.
Given the following data:
- Temperature = 10 Kelvin.
- Number of moles = 1 [tex]m^{-3[/tex]
- Diameter of a hydrogen atom = 100 picometer.
Conversion:
Diameter of a hydrogen atom = 100 pm = [tex]100 \times 10^{-12} = 10^{-10}[/tex] meters.
To calculate the mean free path of hydrogen atoms in interstellar space:
Mathematically, the mean free path of an atom is given by the formula:
[tex]\lambda = \frac{1}{\sqrt{2}\pi d^2 n }[/tex]
Where:
- [tex]\lambda[/tex] is the mean free path of an atom.
- d is the diameter of an atom.
- n is the number of moles.
Substituting the given parameters into the formula, we have;
[tex]\lambda = \frac{1}{\sqrt{2}\; \times \;3.142 \;\times\; (10^{-10})^2 \;\times\;1 }\\\\\lambda = \frac{1}{1.4142\; \times\;3.142 \;\times\; 1^{-18}}\\\\\lambda = \frac{1}{4.44 \;\times\; 10^{-18}}\\\\\lambda = 2.25 \times 10^{17}\; meters[/tex]
Read more: https://brainly.com/question/16953020