Respuesta :
Answer:
0.0133A
Explanation:
Since we have two sections, for the Inductor region there would be a current [tex]i_1[/tex]. In the case of resistance 2, it will cross a current [tex]i_2[/tex]
Defined this we proceed to obtain our equations,
For [tex]i_1[/tex],
[tex]\frac{di_1}{dt}+i_1R_1 = V[/tex]
[tex]I_1 = \frac{V}{R_1} (1-e^{-\frac{R_1t}{L}})[/tex]
For [tex]i_2[/tex],
[tex]I_2R_2 =V[/tex]
[tex]I_2 = \frac{V}{R_2}[/tex]
The current in the entire battery is equivalent to,
[tex]i_t = I_1+I_2[/tex]
[tex]i_t = \frac{V}{R_2}+\frac{V}{R_1} (1-e^{-\frac{R_1t}{L}})[/tex]
Our values are,
[tex]V=1V[/tex]
[tex]R_1 = 95\Omega[/tex]
[tex]L= 1.5*10^{-2}H[/tex]
[tex]R_2 =360\Omega[/tex]
Replacing in the current for t= 0.4m/s
[tex]i=\frac{1}{360}+\frac{1}{95}(1-e^{-\frac{95*0.4}{1.5*10^{-2}}})[/tex]
[tex]i= 0.0133A[/tex]
[tex]i_1 = 0.01052A[/tex]

The current supplied by the battery at a time t = 0.4 ms after the switch is closed os 9.43 mA
The current in the series R₁ and L circuit
Since in the first parallel branch,
- the resistor R₁ = 95 Ω and
- inductor L = 1.5 × 10⁻² H
are in series, the current i₁ in this circuit is given by
[tex]i_{1} = \frac{V}{R_{1} } (1 - e^{-\frac{L}{R}t })[/tex]
The current on the second resistor, R₂
The current in the other second parallel branch is gotten from Ohm's law.
So, V = I₂R₂ where
- V = voltage of battery = 1 V
- i₂ = current in resstor and
- R₂ = resistance = 360 Ω
Making i₂ subject of the formua, we have
i₂ = V/R₂
Current from battery
The current from the battery is thus i = i₂ + i₂
[tex]i = \frac{V}{R_{1} } (1 - e^{-\frac{L}{R}t }) + \frac{V}{R_{2} }[/tex]
So, the current from the battery when t = 0.4 ms = 0.4 × 10⁻³ s is gotten by substituting the values of the variables into the equation for i.
So, we have with V = 1 V
[tex]i = \frac{V}{R_{1} } (1 - e^{-\frac{L}{R}t }) + \frac{V}{R_{2} }[/tex]
[tex]i = \frac{1 V}{95 \Omega} (1 - e^{-\frac{95 \Omega}{1.5 X 10^{-2} H} X 0.4 X 10^{-3} s}) + \frac{ 1 V}{360 \Omega}\\i = \frac{1 V}{95 \Omega} (1 - e^{-\frac{38 X 10^{-3}\Omega s}{1.5 X 10^{-2} H}}) + \frac{1 V}{360 \Omega} \\i = \frac{1 V}{95 \Omega} (1 - e^{-2.533}) + \frac{1 V}{360 \Omega} \\i = \frac{1 V}{95 \Omega} (1 - 0.368) + \frac{1 V}{360 \Omega} \\i = \frac{1 V}{95 \Omega} (0.632) + \frac{1 V}{360 \Omega} \\i = 0.00665 A + 0.00278 A\\i = 0.00943 A\\i = 9.43 mA[/tex]
So, the current supplied by the battery at a time t = 0.4 ms after the switch is closed os 9.43 mA
Learn more about current in series R, L circuit here:
https://brainly.com/question/17028951