In a photoelectric experiment it is found that a stopping potential of 1.00 V is needed to stop all the electrons when incident light of wavelength 278 nm is used and 2.6 V is needed for light of wavelength 207 nm. From these data determine Planck's constant and the work function of the metal.

Respuesta :

Answer:

Planck’s constant is [tex]6.9*10^{-34} Js[/tex]

work function of metal is [tex]5.846*10^{-19}[/tex]

Explanation:

The maximum kinetic energy from electron from photoelectric effect is given by

[tex]\K_{max}=eV_o[/tex] where [tex]V_o[/tex]  is applied voltage and e is charge on electron and substituting charge on electron by [tex]1.6*10^{-19}[/tex]  and 1.00 V for [tex]V_o[/tex]  

[tex]K_{max}=1.6*10^{-19}*1=1.6*10^{-19} J[/tex]

Considering that the wavelength, \lambda of light used is given as [tex] 278*10^{-9} m[/tex]

Energy of light is given by

[tex]E=\frac {hc}{ \lambda}[/tex]   where [tex]\lambda[/tex]  is the wavelength, h is Planck’s constant and c is speed of light. Taking c for [tex]3*10^{8} m/s[/tex]  

Substituting values of wavelength and speed of light we obtain

[tex]E=\frac {h*3*10^{8}}{278*10^{-9}}=h1.07914*10^{15} J[/tex]

If work function is [tex] \phi[/tex]  then

[tex]E=\phi + k_{max}[/tex]  hence

[tex]h1.07914*10^{15} J=\phi +1.6*10^{-19} J[/tex] ------- Equation 1

Energy corresponding to wavelength of 207 nm is

[tex]E=h\frac {3*10^{8} m/s}{207*10^{-9}}=h(1.45*10^{15}}) J[/tex]

Maximum kinetic energy of electrons when [tex]V_o[/tex]  is 2.6 V becomes

[tex]K_{max}=(1.6*10^{-19})*2.6V=4.16*10^{-19} J[/tex]

From [tex]E=\phi + k_{max}[/tex]  and substituting [tex] h(1.45*10^{15}}) J[/tex]  for E and [tex]4.16*10^{-19} J[/tex]  for [tex]K_{max}[/tex]  we have

[tex]h(1.45*10^{15}}) J=\phi +4.16*10^{-19} J[/tex] ------ Equation 2

Equation 2 minus equation 1 gives

[tex]h3.71*10^{14}=2.56*10^{-19}[/tex]

[tex]h=\frac {2.56*10^{-19}}{3.71*10^{14}}\approx 6.9*10^{-34} Js[/tex]

Therefore, Planck’s constant is [tex]6.9*10^{-34} Js[/tex]

Recalling equation 1 and substituting back the value of h as obtained

[tex]h1.07914*10^{15} J=\phi +1.6*10^{-19} J[/tex]

[tex] (6.9*10^{-34})*(1.07914*10^{15})=\phi +1.6*10^{-19} J[/tex]

[tex]\ph=(6.9*10^{-34})*(1.07914*10^{15})-(1.6*10^{-19})=5.846*10^{-19}[/tex]

Therefore, work function of metal is [tex]5.846*10^{-19}[/tex]