a rectangle is formed whose length is twice the width. it is enlarged to a similar rectangle as the width changes at a rate of 4 inches per minute. when the width is 10 inches, how fast is the area of the rectangle changing

Respuesta :

Answer:

[tex]\dfrac{dA}{dt}=160\ in/min[/tex]

Explanation:

Given that,

[tex]l=2b[/tex]

[tex]\dfrac{db}{dt}=4\ in/min[/tex]

To find,

Rate of change of area, [tex]\dfrac{dA}{dt}[/tex]

Let l is the length and b is the breadth of the rectangle. The area of the rectangle is given by :

[tex]A=l\times b[/tex]

Differentiating above equation wrt t

[tex]\dfrac{dA}{dt}=l\dfrac{db}{dt}+b\dfrac{dl}{dt}[/tex]

[tex]\dfrac{dA}{dt}=2b\dfrac{db}{dt}+b\dfrac{dl}{dt}[/tex]

When b = 10 in

[tex]\dfrac{dl}{dt}=2\dfrac{db}{dt}[/tex]

[tex]\dfrac{dA}{dt}=2\times 10\times 4+10\times 2\dfrac{db}{dt}[/tex]

[tex]\dfrac{dA}{dt}=2\times 10\times 4+10\times 2\times 4[/tex]

[tex]\dfrac{dA}{dt}=160\ in/min[/tex]

So, the area of rectangle is changing at the rate of 160 inches per minute.